14 research outputs found

    Evaluation of a novel saliva-based epidermal growth factor receptor mutation detection for lung cancer: A pilot study.

    Get PDF
    BackgroundThis article describes a pilot study evaluating a novel liquid biopsy system for non-small cell lung cancer (NSCLC) patients. The electric field-induced release and measurement (EFIRM) method utilizes an electrochemical biosensor for detecting oncogenic mutations in biofluids.MethodsSaliva and plasma of 17 patients were collected from three cancer centers prior to and after surgical resection. The EFIRM method was then applied to the collected samples to assay for exon 19 deletion and p.L858 mutations. EFIRM results were compared with cobas results of exon 19 deletion and p.L858 mutation detection in cancer tissues.ResultsThe EFIRM method was found to detect exon 19 deletion with an area under the curve (AUC) of 1.0 in both saliva and plasma samples in lung cancer patients. For L858R mutation detection, the AUC of saliva was 1.0, while the AUC of plasma was 0.98. Strong correlations were also found between presurgery and post-surgery samples for both saliva (0.86 for exon 19 and 0.98 for L858R) and plasma (0.73 for exon 19 and 0.94 for L858R).ConclusionOur study demonstrates the feasibility of utilizing EFIRM to rapidly, non-invasively, and conveniently detect epidermal growth factor receptor mutations in the saliva of patients with NSCLC, with results corresponding perfectly with the results of cobas tissue genotyping

    Retrograde Labeling of Different Distribution Features of DRG P2X2 and P2X3 Receptors in a Neuropathic Pain Rat Model

    No full text
    The distributions of P2X subtypes during peripheral neuropathic pain conditions and their differential roles are not fully understood. To explore these characteristics, the lumbosacral dorsal root ganglion (DRG) in the chronic constriction injury (CCI) sciatic nerve rat model was studied. Retrograde trace labeling combined with immunofluorescence technology was applied to analyze the distribution of neuropathic nociceptive P2X1-6 receptors. Our results suggest that Fluoro-Gold (FG) retrograde trace labeling is an efficient method for studying lumbosacral DRG neurons in the CCI rat model, especially when the DRG neurons are divided into small, medium, and large subgroups. We found that neuropathic nociceptive lumbosacral DRG neurons (i.e., FG-positive cells) were significantly increased in medium DRG neurons, while they declined in the large DRG neurons in the CCI group. P2X3 receptors were markedly upregulated in medium while P2X2 receptors were significantly decreased in small FG-positive DRG neurons. There were no significant changes in other P2X receptors (including P2X1, P2X4, P2X5, and P2X6). We anticipate that P2X receptors modulate nociceptive sensitivity primarily through P2X3 subtypes that are upregulated in medium neuropathic nociceptive DRG neurons and/or via the downregulation of P2X2 cells in neuropathic nociceptive small DRG neurons

    Intrapulmonary lymph node metastasis is common in clinically staged IA adenocarcinoma of the lung

    No full text
    Background Intrapulmonary lymph nodes (LNs, stations 11–14) are usually omitted in postoperative pathological examination. Some non‐small cell lung cancer (NSCLC) patients with intrapulmonary LN metastasis are incorrectly diagnosed as N0 cases. Furthermore, underestimation of intrapulmonary LN involvement in clinically early stage NSCLC may lead to the incorrect choice of surgical procedure: lobectomy or sublobar resection. This study was conducted to determine the status of intrapulmonary LN involvement in clinically staged IA (c‐T1N0M0) peripheral adenocarcinoma of the lung. Methods Seventy‐five lobectomy specimens of c‐T1N0M0 peripheral adenocarcinoma of the lung were carefully dissected to find intrapulmonary LNs. The longest diameter of each intrapulmonary LN was measured and sent for pathological examination, together with hilar and mediastinal LNs, to investigate the relationship between LN metastasis and primary tumor size. Results Intrapulmonary LN metastasis was detected in 22.7%(17/75) of patients. Positive LNs were detected in 21.7% (10/46) of T1b patients and 45% (11/24) of T1c patients, while no metastasis (0/5) was observed in T1a patients (P = 0.036). The mean longest diameter of the 17 involved intrapulmonary LNs was only 6.5 ± 2.1 mm, which was not significantly different to the size of negative intrapulmonary LNs (5.2 ± 1.4 mm). Conclusions Intrapulmonary LN metastasis is common in clinically staged IA peripheral adenocarcinoma of the lung. LN metastasis is related to tumor size, and this should be taken into account to determine appropriate surgical procedures and postoperative treatment. Computed tomography is not a reliable method to judge LN metastasis, particularly intrapulmonary LN metastasis

    Ratiometric Fluorescent Sensor Based on Hydrogen-Bond Triggering the Internal Filter Effect for Enzyme-Free and Visual Monitoring Pesticide Residues

    No full text
    Real-time/field sensing techniques to keep track of methyl parathion (MP) are crucial to human health. In this work, a ratiometric fluorescence probe was constructed by integrating green carbon dots and CdTe quantum dots (CdTe QDs) for highly selective quantitative detection of MP. Under alkaline conditions, MP can be rapidly hydrolyzed to produce p-nitrophenol (p-NP); the instantaneous reaction that strengthens the hydrogen bond results in the internal filter effect between the carbon dots and p-NP, which quenches green fluorescence, thus leading to an obvious and immediate change from green to red. The probe displayed a sensitive limit of detection of 8.9 nM and exhibited a significant linear response to MP residue concentrations in the range of 0–100 M. In addition, we have created a brand-new smartphone-based intelligent detection tool by measuring the RGB value of the fluorescent probe solution and the matching paper-based sensor, and we are able to visually and quantitatively identify the levels of MP residues present in water, apples, and vegetables. This ratiometric fluorescence sensing method can realize rapid visual and quantitative detection of MP residues, which provides a more reliable guarantee promising strategy for constructing a risk detection technique for traces without enzymes

    Association between Pregestational Vaginal Dysbiosis and Incident Hypertensive Disorders of Pregnancy Risk: a Nested Case-Control Study

    No full text
    ABSTRACT A balanced vaginal microbiome dominated by Lactobacillus can help promote women’s reproductive health, with Lactobacillus crispatus showing the most beneficial effect. However, the potential role of vaginal microbiomes in hypertensive disorders of pregnancy (HDP) development is not thoroughly explored. In this nested case-control study based on an assisted reproductive technology follow-up cohort, we prospectively assessed the association between pregestational vaginal microbiomes with HDP by collecting vaginal swabs from 75 HDP cases (HDP group) and 150 controls (NP group) and using 16S amplicon sequencing for bacterial identification. The vaginal microbial composition of the HDP group significantly differed from that of the NP group. The abundance of L. crispatus was significantly lower, and the abundances of Gardnerella vaginalis was significantly higher, in the HDP group than in the NP group. Of note, L. crispatus-dominated vaginal community state type was associated with a decreased risk for HDP (odds ratio = 0.436; 95% confidence interval, 0.229 to 0.831) compared with others. Additionally, network analysis revealed different bacterial interactions with 61 and 57 exclusive edges in the NP and HDP groups, respectively. Compared with the HDP group, the NP group showed a higher weighted degree and closeness centrality. Several taxa, including G. vaginalis, L. iners, and bacterial vaginosis-associated bacteria (Prevotella, Megasphaera, Finegoldia, and Porphyromonas), were identified as “drivers” for network rewiring. Notable alterations of predicted pathways involved in amino acid, cofactor, and vitamin metabolism; membrane transport; and bacterial toxins were observed in the HDP group. IMPORTANCE The etiology of HDP remains unclear to date. Effective methods for the individualized prediction and prevention are lacking. Pregestational vaginal dysbiosis precedes the diagnosis of HDP, providing a novel perspective on the etiology of HDP. Early pregnancy is the critical period of placental development, and abnormal placentation initiates HDP development. Thus, disease prevention should be considered before pregnancy. Vaginal microbiome characterization and probiotic interventions before pregnancy are preferred because of their safety and potential for early prevention. This study is the first to prospectively assess associations between pregestational vaginal microbiome and HDP. L. crispatus-dominated vaginal community state type is linked to a reduced risk for HDP. These findings suggest that vaginal microbiome characterization may help identify individuals at high risk for HDP and offer potential targets for the development of novel pregestational intervention methods

    Nat. Nanotechnol.

    No full text
    Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance tradeoffs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with L-phenylalanine generate a photocurrent under righthanded circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light. The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons. Concomitantly, a thick layer of enantiopure phenylalanine facilitates their subsequent entrapment at the membrane-electrolyte interface. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly 2 and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics

    Evaluation of a novel saliva‐based epidermal growth factor receptor mutation detection for lung cancer: A pilot study

    No full text
    BACKGROUND: This article describes a pilot study evaluating a novel liquid biopsy system for non‐small cell lung cancer (NSCLC) patients. The electric field‐induced release and measurement (EFIRM) method utilizes an electrochemical biosensor for detecting oncogenic mutations in biofluids. METHODS: Saliva and plasma of 17 patients were collected from three cancer centers prior to and after surgical resection. The EFIRM method was then applied to the collected samples to assay for exon 19 deletion and p.L858 mutations. EFIRM results were compared with cobas results of exon 19 deletion and p.L858 mutation detection in cancer tissues. RESULTS: The EFIRM method was found to detect exon 19 deletion with an area under the curve (AUC) of 1.0 in both saliva and plasma samples in lung cancer patients. For L858R mutation detection, the AUC of saliva was 1.0, while the AUC of plasma was 0.98. Strong correlations were also found between presurgery and post‐surgery samples for both saliva (0.86 for exon 19 and 0.98 for L858R) and plasma (0.73 for exon 19 and 0.94 for L858R). CONCLUSION: Our study demonstrates the feasibility of utilizing EFIRM to rapidly, non‐invasively, and conveniently detect epidermal growth factor receptor mutations in the saliva of patients with NSCLC, with results corresponding perfectly with the results of cobas tissue genotyping
    corecore